Bilinear Strichartz's type estimates in Besov spaces with application to inhomogeneous nonlinear biharmonic Schrödinger equation

نویسندگان

چکیده

In this paper, we consider the well-posedness of inhomogeneous nonlinear biharmonic Schrödinger equation with spatial inhomogeneity coefficient K(x) behaves like |x|−b for 0<b<min⁡{N2,4}. We show local in whole Hs-subcritical case, 0<s≤2. The difficulties problem come from singularity and lack differentiability term. To resolve this, derive bilinear Strichartz's type estimates equations Besov spaces.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular Solutions of the Biharmonic Nonlinear Schrödinger Equation

We consider singular solutions of the L 2-critical biharmonic nonlinear Schrödinger equation. We prove that the blowup rate is bounded by a quartic-root, the solution approaches a quasi–self-similar profile, and a finite amount of L 2-norm, which is no less than the critical power, concentrates into the singularity. We also prove the existence of a ground-state solution. We use asymptotic analy...

متن کامل

Nonlinear Schrödinger Equation on Real Hyperbolic Spaces

We consider the Schrödinger equation with no radial assumption on real hyperbolic spaces. We obtain sharp dispersive and Strichartz estimates for a large family of admissible pairs. As a first consequence, we obtain strong wellposedness results for NLS. Specifically, for small intial data, we prove L 2 and H 1 global wellposedness for any subcritical nonlinearity (in contrast with the flat case...

متن کامل

ṕ Estimates for the Schrödinger Equation on the Line and Inverse Scattering for the Nonlinear Schrödinger Equation with a Potential ∗

In this paper I prove a L − L estimate for the solutions of the one–dimensional Schrödinger equation with a potential in Lγ where in the generic case γ > 3/2 and in the exceptional case (i.e. when there is a half–bound state of zero energy) γ > 5/2. I use this estimate to construct the scattering operator for the nonlinear Schrödinger equation with a potential. I prove moreover, that the low–en...

متن کامل

Ring-type singular solutions of the biharmonic nonlinear Schrödinger equation

We present new singular solutions of the biharmonic nonlinear Schrödinger equation (NLS) iψt(t,x)− ψ + |ψ |2σψ = 0, x ∈ R , 4/d σ 4. These solutions collapse with the quasi-self-similar ring profile ψQB , where |ψQB(t, r)| ∼ 1 L2/σ (t) QB ( r − rmax(t) L(t) ) , r = |x|, L(t) is the ring width that vanishes at singularity, rmax(t) ∼ r0L(t) is the ring radius, and α = (4 − σ)/(σ (d − 1)). The blo...

متن کامل

Inverse Problem for an Inhomogeneous Schrödinger Equation * †

Let (− k 2)u = −u + q(x)u − k 2 u = δ(x), x ∈ R, ∂u ∂|x| − iku → 0, |x| → ∞. Assume that the potential q(x) is real-valued and compactly supported: q(x) = q(x), q(x) = 0 for |x| ≥ 1, 1 −1 |q|dx < ∞, and that q(x) produces no bound states. Let u(−1, k) and u(1, k) ∀k > 0 be the data. Theorem.Under the above assumptions these data determine q(x) uniquely.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2021

ISSN: ['1090-2732', '0022-0396']

DOI: https://doi.org/10.1016/j.jde.2021.06.007